
信息系统开发中常用的,信息系统开发中常用的两种基本方法


大家好,今天小编关注到一个比较有意思的话题,就是关于信息系统开发中常用的的问题,于是小编就整理了1个相关介绍信息系统开发中常用的的解答,让一起看看吧。
简单易用的数据库哪个比较好?
Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。
遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!
现在,我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?
数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。
如果你只是上班打卡,用SQL server就可以了;
如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;
不过90%的企业或个人,首选数据库都是MySQL数据库。
因为,它集低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码等特性于一身,所以在金融、财务、网站、数据处理等应用领域,它占据着独一无二的优势。
这也是几乎所有企业都选择它,来存储数据的原因。
加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库操作的工具。
这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面操作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。
1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。
2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。
3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。
4.数据量较小,比如十万以下,sqlite、access都可以。
上面是基于单表操作的数据量,你看着选。
简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:
小巧灵活sqlite
这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口,java、python、c#等都可轻松操作,如果你存储数据量不多,只是本地简单的操作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:
专业强大mysql
这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:
免费开源postgresql
这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:
当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的[_a***_]能对你有所帮助吧,也欢迎大家评论、留言进行补充。
到此,以上就是小编对于信息系统开发中常用的的问题就介绍到这了,希望介绍关于信息系统开发中常用的的1点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.nbdaiqile.com/post/17005.html发布于 2024-03-04